Skip to content

Matrices

Properties

Properties of matrix operations:

  • Addition: If \(A\) and \(B\) are matrices of the same size \(m×n\), then their sum \(A+B\) is also an \(m×n\) matrix.
  • Multiplication by scalars: If \(A\) is an \(m×n\) matrix and \(c\) is a scalar, then \(cA\) is an \(m×n\) matrix.
  • Matrix multiplication: If \(A\) is an \(m×n\) matrix and \(B\) is an \(n×p\) matrix, then the product \(AB\) is an \(m×p\) matrix.
  • Vectors: A vector of length \(n\) can be treated as an \(n×1\) matrix. Vector addition, scalar multiplication, and matrix-vector multiplication follow the same rules as matrix operations.
  • Transpose: For an \(m×n\) matrix \(A\), its transpose \(A^T\) is an \(n×m\) matrix.
  • Identity matrix: \(I_n\) is the \(n×n\) identity matrix, with 1's on the diagonal and 0's elsewhere.
  • Zero matrix: Denoted by 0, it is a matrix of all zeroes with appropriate size.
  • Inverse: For a square matrix \(A\), its inverse \(A^{-1}\) is a matrix of the same size such that \(AA^{-1} = A^{-1}A = I_n\). Not all matrices have inverses; those that do are called invertible.

Key properties (assuming scalars \(r, s\) and appropriately sized matrices \(A, B, C\)):

Properties of matrix addition:

\[ \begin{aligned} & A + B = B + A && \text{(Commutativity)} \\ & (A + B) + C = A + (B + C) && \text{(Associativity)} \\ & A + 0 = A, && \text{(Additive identity)} \\ & r(A + B) = rA + rB && \text{(Distributivity of scalar over addition)} \\ & (r + s)A = rA + sA && \text{(Distributivity of addition over scalar)} \\ & r(sA) = (rs)A && \text{(Associativity of scalar multiplication)} \\ \end{aligned} \]

Properties of matrix multiplication:

\[ \begin{aligned} & A(BC) = (AB)C && \text{(Associativity)} \\ & A(B + C) = AB + AC && \text{(Left distributivity)} \\ & (B + C)A = BA + CA && \text{(Right distributivity)} \\ & r(AB) = (rA)B = A(rB) && \text{(Scalar multiplication compatibility)} \\ & I_m A = A = A I_n && \text{(Identity matrix)} \\ \end{aligned} \]

Properties of the transpose operation:

\[ \begin{aligned} & (A^T)^T = A, && \text{(Double transpose)} \\ & (A + B)^T = A^T + B^T && \text{(Transpose of sum)} \\ & (rA)^T = r A^T && \text{(Transpose of scalar multiple)} \\ & (AB)^T = B^T A^T && \text{(Transpose of product reverses order)} \\ & (I_n)^T = I_n && \text{(Transpose of identity)} \\ \end{aligned} \]

Properties of the inverse operation (for invertible matrices):

\[ \begin{aligned} & A A^{-1} = A^{-1} A = I_n, && \text{(Inverse definition)} \\ & (rA)^{-1} = r^{-1} A^{-1} \quad r \neq 0, && \text{(Inverse of scalar multiple)} \\ & (AB)^{-1} = B^{-1} A^{-1} && \text{(Inverse of product reverses order)} \\ & (I_n)^{-1} = I_n && \text{(Inverse of identity)} \\ & (A^T)^{-1} = (A^{-1})^T && \text{(Transpose and inverse commute)} \\ & (A^{-1})^{-1} = A && \text{(Inverse of inverse)} \\ \end{aligned} \]

Additional Properties

\[ \begin{aligned} & A = A^T \quad \text{(Symmetric matrix)} \\ & Q^T Q = I_n \quad \text{(Orthogonal matrix)} \\ & \mathrm{tr}(A + B) = \mathrm{tr}(A) + \mathrm{tr}(B) \quad \text{(Trace linearity)} \\ & \mathrm{tr}(AB) = \mathrm{tr}(BA) \quad \text{(Trace cyclic property)} \\ & \det(AB) = \det(A) \det(B) \quad \text{(Determinant multiplicative)} \\ & \det(A^T) = \det(A) \quad \text{(Determinant transpose)} \\ & \det(A^{-1}) = \frac{1}{\det(A)} \quad \text{(Determinant inverse)} \\ & \operatorname{rank}(A) \leq \min(m, n) \quad \text{for } A \in \mathbb{R}^{m \times n} \\ & \operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B)) \\ & \text{If } A \text{ is invertible and } AB = AC \text{ then } B = C \quad \text{(Cancellation law)} \\ & \text{In general, } AB \neq BA \quad \text{(Non-commutativity)} \\ & (A + B)(A - B) = A^2 - B^2 \quad \text{only if } AB = BA \quad \text{(Difference of squares)} \\ & \text{If } A \text{ is symmetric and positive definite, } \exists \text{ Cholesky factorization } A = LL^T \\ & \text{Eigenvalues of } A^T = \text{Eigenvalues of } A \\ & \text{Eigenvalues of } A^{-1} = \frac{1}{\text{Eigenvalues of } A} \end{aligned} \]

Differences from regular number operations:

  • Matrix multiplication is generally not commutative; in general, \(AB \neq BA\).
  • The transpose of a product reverses order: \((AB)^T = B^T A^T\).
  • The inverse of a product reverses order: \((AB)^{-1} = B^{-1} A^{-1}\).
  • To conclude \(B = C\) from \(AB = AC\), matrix \(A\) must be invertible.
  • If \(AB = 0\), it does not imply \(A = 0\) or \(B = 0\). For example,
\[ A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \]

Types

Matrices come in many forms depending on their size, elements, and special properties. Below is a detailed overview of the most common types of matrices used in linear algebra.

1. Square Matrix

A matrix with the same number of rows and columns.

\[ A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \]

Example: \(\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}\)

2. Rectangular Matrix

A matrix where the number of rows is not equal to the number of columns.

\[ B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mp} \end{bmatrix} \]

with \(m\neq n\) .

3. Row Matrix

A matrix with only one row \(1 \times n\).

\[ R = \begin{bmatrix} r_1 & r_2 & \cdots & r_n \end{bmatrix} \]

4. Column Matrix

A matrix with only one column \(m \times 1\).

\[ C = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{bmatrix} \]

5. Zero Matrix (Null Matrix)

A matrix in which all elements are zero.

\[ O = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}  \]

6. Identity Matrix

A square matrix with ones on the main diagonal and zeros elsewhere.

\[ I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \]

7. Diagonal Matrix

A square matrix where all off-diagonal elements are zero.

\[ D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix} \]

8. Scalar Matrix

A diagonal matrix where all diagonal entries are equal.

\[ S = \lambda I_n = \begin{bmatrix} \lambda & 0 & \cdots & 0 \\ 0 & \lambda & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda \end{bmatrix} \]

9. Symmetric Matrix

A square matrix that is equal to its transpose: \(A = A^T\)

10. Skew-Symmetric (Antisymmetric) Matrix

A square matrix whose transpose equals its negative: \(A^T = -A\)

11. Orthogonal Matrix

A square matrix \(Q\) with real entries whose transpose is its inverse:

\[ \begin{gathered} Q^T = Q^{-1} \\\text{OR}\\ Q^T Q = Q Q^T = I_n \end{gathered} \]

Example: A rotation matrix \(Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}\)

12. Singular Matrix

A square matrix that does not have an inverse. Its determinant is zero: \(\det(A) = 0\)

13. Invertible (Nonsingular) Matrix

A square matrix \(A\) that has an inverse: \(A^{-1} = A^{-1} A = I_n\)

14. Positive Definite Matrix

A symmetric matrix \(A\) such that for all nonzero vectors \(x\), \(x^T A x > 0\)

Its eigenvalues are strictly positive. If the quadratic form is strictly greater than zero for all non-zero vectors x, then the matrix is called positive definite.

15. Positive Semi-Definite (PSD) Matrix

A symmetric matrix \(A\) is positive semi-definite if for all vectors \(x\), \(x^T A x \geq 0\)

Its eigenvalues are non-negative. This means the quadratic form is never negative, but it can be zero for some nonzero \(x\).

16. Hermitian Matrix

A square matrix \(A\) with complex entries is Hermitian if it equals its own conjugate transpose: \(A = A^H = \overline{A}^T\)

This means \(A_{ij} = \overline{A_{ji}}\) for all \(i,j\).

Example: \(A = \begin{bmatrix} 2 & 2 + i \\ 2 - i & 3 \end{bmatrix}\)Here, \(A = A^H\).

17. Skew-Hermitian Matrix

A square matrix A is skew-Hermitian if it satisfies: \(A = -A^H = -\overline{A}^T\)(i.e. if and only if it is equal to the negative of its conjugate matrix).

This means \(A_{ij} = -\overline{A_{ji}}\).

Example: \(A = \begin{bmatrix} 0 & 2 + i \\ -2 + i & 0 \end{bmatrix}\)Here, \(A = -A^H\).


18. Idempotent Matrix

A square matrix A is idempotent if: \(A^2 = A\) or \(A^n = A\), for every \(n ≥ 2\)

This means multiplying the matrix (not element-wise) by itself returns the same matrix.

19. Nilpotent Matrix

A square matrix \(A\) of order \(n\) is nilpotent if there exists an integer \(k \leq n\) such that: \(A^k = 0\)where \(0\) is the zero matrix.

20. Involutory Matrix

A square matrix \(A\) is involutory if it is its own inverse: \(A^{-1} = A\)

For example, an identity matrix is involutory as it is equal to its inverse.

References

  1. https://math.mit.edu/~dyatlov/54summer10/matalg.pdf